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Abstract: The classically defined minimum uncertainty of the optical phase is known as the stan-
dard quantum limit or shot-noise limit (SNL), originating in the uncertainty principle of quantum
mechanics. Based on the SNL, the phase sensitivity is inversely proportional to

√
K, where K is the

number of interfering photons or statistically measured events. Thus, using a high-power laser is
advantageous to enhance sensitivity due to the

√
K gain in the signal-to-noise ratio. In a typical

interferometer, however, the resolution remains in the diffraction limit of the K = 1 case unless the
interfering photons are resolved as in quantum sensing. Here, a projection measurement method in
quantum sensing is adapted for classical sensing to achieve an additional

√
K gain in the resolution.

To understand the projection measurements, several types of conventional interferometers based on
N-wave interference are coherently analyzed as a classical reference and numerically compared with
the proposed method. As a result, the Kth-order intensity product applied to the N-wave spectrom-
eter exceeds the diffraction limit in classical sensing and the Heisenberg limit in quantum sensing,
where the classical N-slit system inherently satisfies the Heisenberg limit of π/N in resolution.

Keywords: optical sensing; projection measurement; many-wave interference; higher-order
intensity product

1. Introduction

Optical sensing and metrology have been one of the most important research topics in
modern science and technology for precision measurement [1–13]. In optical sensing, high-
precision measurements have been pursued in physics [1–3], chemistry [4,5], biology [6,7],
medicine [7], and even the semiconductor industry [8,9] and military services [10,11].
The classical phase sensitivity or resolution limit is known as the shot-noise limit (SNL),
which originates in the uncertainty relation between photon number and phase [12–15].
In SNL, the phase sensitivity is proportional to 1/

√
K, where K is the intensity order of

interfering photons in an interferometer or statistically provided measurement events.
Thus, to increase the signal-to-noise ratio (SNR), a higher-order K probe light must be used.
However, the demonstration of SNL for K > 1 has not been reported yet in interferometer-
based optical sensing and metrologies. Although many-wave interference in a Fabry–Perot
interferometer (FPI) or grating-based spectrometer is a well-known technique for high-
resolution spectroscopy [16], it is still limited to the K = 1 case of SNL with high-end optical
and electronic systems.

To beat the SNL, quantum sensing has been developed for nonclassical phenom-
ena [17–28]. In quantum sensing, super-resolution [20] and supersensitivity [21,22]
have been studied using nonclassical lights such as maximally entangled photons of
N00N states [12,14] and squeezed lights [15]. The photonic de Broglie wave (PBW)
using N00N state is a good example of super-resolution, satisfying the Heisenberg
limit (HL) [23–25] and overcoming SNL, where supersensitivity is an independent
issue [20]. Super-resolution is for phase sensitivity to resolve a frequency difference
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better. However, N00N state-based PBWs suffer from inherently inefficient generation
processes limited by nonlinear optics [20–24] and nonperfect fringe visibility for N > 2,
where N is the total photon number of an entangled pair [20,25]. Unlike N00N states,
squeezed states cannot be used for super-resolution, even though they have been well
adopted for supersensitivity in gravitational wave detection below the SNL [15]. Su-
persensitivity is for the sensing ability to detect a signal below the SNL, where a 10 dB
gain over the shot noise is normally achievable nowadays using squeezed lights. Due
to the prerequisite of nonclassical light, however, quantum sensing is not compatible
with classical sensors or metrologies. Most of all, N00N-based super-resolution is
far behind classical sensors due to the limited order N and the working condition of
extremely noisy environments [26,27], where the maximum entangled photon number
N achieved by a PBW is just N = 18 [28].

Here, the projection measurement in quantum sensing [25] is adapted to an interfer-
ometer for intensity-product-based optical sensing to show interferometric SNL beating
the diffraction limit or Rayleigh criterion limited by K = 1. Satisfying coherence optics,
the proposed method is inherently compatible with all interferometer-based sensors. The
original projection measurement scheme is to split an interferometer’s output port into
identical K ports using nonpolarizing 50/50 beam splitters (BSs), as shown in the inset of
Figure 1a [29]. Here, the projection measurement aims to distinguish interfering photons
in a post-detection manner, as originally understood in quantum sensing [17,25]. Thus,
the role of divided fields in Figure 1a (see the inset for X) is to post-determine the number
of interfering photons or measurement events contributing to the SNL on a single-shot
measurement basis [29]. For the projection measurement, the maximum number K can
be ideally equal to the photon number M of the input light L. Regarding the first-order
(K = 1) intensity correlation of the Mach–Zehnder interferometer (MZI) output fields (EA
and EB), no difference exists between single photons and continuous-wave light [30], as
demonstrated with a single photon for the same fringe [29,31]. This equality between
quantum and classical approaches satisfies for K = 1 in Figure 1a without X [30]. Thus, the
adaptability of the projection measurement to enhance the resolution overcoming diffrac-
tion limit is obvious due to K ≫ N, where the split number (or intensity product) K can be
replaced by a 2D image sensor for block ‘X’ in Figure 1a.
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Figure 1. Schematic of various interferometers. (a) Intensity-product-based SNL. Inset X: projection
measurements for the Kth intensity product. (b) Grating-based interferometer. (c) N-slit interferome-
ter. L: laser, BS: beam splitter, PZT: piezoelectric transducer.

2. Materials and Methods

Figure 1 shows the schematic of the proposed projection measurement-based optical
sensing using higher-order intensity correlations (products) for the SNL. Figure 1a shows
a typical MZI, and ‘X’ represents the projection measurement. For X, the MZI output is
evenly divided into K ports by BSs for the Kth-order intensity correlation. Thus, ‘X’ is
scalable by 2j, where j is the number of BSs. In the K-split MZI output ports, global phases
generated by inserted BSs [32] and elongated optical paths to individual photodiodes do
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not affect their intensities due to Born’s rule, stating that measurement is the absolute
square of its amplitude [33]. In other words, all K-divided output fields must be equal
in intensity, satisfying the statistical ensemble of measurement events for the SNL on a
single-shot measurement basis. Here, the statistical ensemble of K spit fields satisfies the
Gaussian distribution of photon statistics.

3. Theory

For a coherence solution of the intensity-product-based optical sensing in Figure 1a,
first, original MZI output intensities are derived as follows using the BS matrix [32]:

IA =
I0

2
(1 + cosφ), (1)

IB =
I0

2
(1 − cosφ), (2)

where IA = EAE∗
A, IB = EBE∗

B, and Ej is the amplitude of the optical field. Thus, the MZI
fringes show a deterministic coherence feature depending on the relative phase φ caused
by the MZI path-length difference. Due to the same coherence feature, MZI in Figure 1 can
be replaced by a Michelson interferometer, as usually adapted for remote sensors. Due
to the global phase-independent intensities for all divided ports, the intensity of the jth
divided output field in ‘X’ can be represented as:

Ij =

(
1
2

)K I0

2
(1 + cosφ). (3)

Quantum mechanically, K implies interfering photons post-determined by the projec-
tion measurement: for a 1 W-power laser with 1 GHz bandwidth, the maximum photon
number M is 109. Using commercially available photodetectors whose response time is
shorter than the inverse of the laser bandwidth, the Kth-order intensity correlation is as
follows using Equation (3):

C(K)
N =

IK
0

2(K+1)K
(1 + cosφ)K, (4)

where K ≤ M. The numerical calculations of Equation (4) are shown in Figure 2, where
the satisfaction of the output field by the Kth product is due to the Gaussian distribution
of the measured light, as shown in Figure 3. Unlike quantum sensing using nonclassical
light, the intensity product in Equation (4) can be coherently amplified, compensating
for the reduction factor of 2−(K+1)K. Unlike the enhanced coherence effect in many-wave
interference (discussed below), IK

0 is the correlation effect by the intensity product [16].
This correlation effect is powerful in reducing unwanted noise. Satisfying K ≪ M in ‘X’ of
Figure 1c, the intensity product in Equation (4) gives a great benefit to the resolution of the
proposed optical sensing with a high SNR [29].

Figure 1b,c show schematics of many-wave interference on an N-groove grating and
an N-slit interferometer, respectively. As introduced for MZI in Figure 1a, the interference
fringe in Figure 1b,c can also be used for the same projection measurement, satisfying
SNL. In Figure 1b,c, the N-groove or N-slit resulting interference fringes show an enhanced
resolution by ∆N = π/N (N ≥ 2), where Figure 1a is only for N = 2 [16]. For this, a discrete
phase relation between N coherent waves is essential [16]. Unlike the N-slit interferometer
in Figure 1c, the N-groove grating in Figure 1b allows only one interference fringe in each
grating order due to the nearly equal ratio of ‘a’ to ‘b.’ Thus, the well-known grating
equation is given by 2dsinθB = pπ

(
pλ
2

)
for the grating order and the ordered interference

fringes, where p = 0,±1,±2, . . ., and λ is the wavelength of the interfering light. For the
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N-wave interference, the analytical solution can be derived from the N-slit interferometer
in Figure 1c [16]:

IN(α,β) = sinc2β

(
sinNα

sinα

)2
, (5)

where α = kdasinθ/2, β = kdbsinθ/2, and kd = 2π/λ. Slit number N must be fully
covered by the coherent input light. As discussed below, Equation (5) results in N/2-
enhanced resolution compared to the two-slit case of Equations (1) and (2) due to the
N-wave superposition. Interestingly, this N-slit interferometer satisfies the Heisenberg
limit for resolution [16]. The numerical calculations of Equation (5) are shown in Figure 4.
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Figure 2. Numerical calculations of Equation (3) for K = 1 (black), 2 (green), 3 (red), 4 (blue), 8 (dotted),
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√
K. Open red circles: data from the arrows (FWHMs) in the left panel.
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K .

To overcome the phase resolution in Equation (5), satisfying the Heisenberg limit in
phase resolution, the same projection measurement in Equation (4) is applied to K split
output fields:

R(K)
N (α,β) =

IK
N

2(K+1)K
sinc2Kβ

(
sinNα

sinα

)2K
. (6)

Thus, the intensity product applied to the output field of Figure 1b or Figure 1c via
the projection measurement method results in overcoming the resolution given by the
Heisenberg limit. The corresponding numerical calculations are shown in Figures 5 and 6.
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4. Numerical Calculations

Figure 2 shows the numerical calculations of the Kth-order intensity correlations
for Figure 1a using Equation (4). For this, the number of divided output ports is
set at K = 100, where K is far smaller than the actual photon number M of I0. All
K-dependent intensity products are normalized for comparison purposes. As shown
in Figure 2, the ratio of full-width-at-half-maxima (FWHM) of the Kth-order to the
first–order (K = 1) intensity correlations is nearly 1/

√
K (see red circles in the right

panel): the small discrepancy from the SNL theory (black curve) is due to the sine
(monochromatic) function of the light rather than the Gaussian distribution of the actual
laser light in photon statistics (discussed in Figure 3). Thus, the intensity-product-
resulting resolution enhancement in Figure 2 demonstrates the SNL for Equation (4).
In other words, Figure 2 verifies that the proposed projection measurement-based
optical sensing in Figure 1a satisfies the SNL using a commercially available laser: for
experimental demonstrations up to K = 4, see ref. [29]. More importantly, the resulting√

K-enhanced resolution in Figure 2 does not require a photon-number resolving
single-photon detector used in quantum sensing [12–14]. According to Born’s rule, the
K-divided output field’s intensities in ‘X’ of Figure 1a are independent and individual
for measurements, satisfying the statistical ensemble of the SNL. Due to the limited
scalability of BSs (or 2D arrayed photodetector), far less than the actual photon number
of the laser, the phase-resolution enhancement is even practical due to the high SNR,
as in conventional sensors.

Figure 3a shows numerical calculations of FWHMs of the autocorrelation (self-intensity
product) for a Gaussian function. Here, a laser has the same feature as the Gaussian
distribution if the mean photon number is ⟨n⟩ ≫ 1. Figure 3b is for linearly distributed
fields for a comparison purpose. The horizontal axis in Figure 3a,b is for the phase variation
(noise) in the unit of standard deviation σ of the Gaussian function used for Figure 3a.

Figure 3c shows the ratio of the K-ordered FWHMs to the first order (K = 1) for
Figure 3a,b, where ‘HL’ represents the Heisenberg limit in quantum sensing as a reference.
Thus, the SNL is analytically confirmed for the Gaussian distribution of Figure 3a, where the
FWHMs are inversely proportional to

√
K. This

√
K-enhanced phase sensitivity is due to

the normal probability distribution of statistical events (see the blue dots in Figure 3c). Thus,
the origin of the SNL in Figure 2 is the Gaussian distribution of a laser. If the probability
distribution is linear as shown in Figure 3b, the resolution enhancement is much better
than the Gaussian (see the red dots in Figure 3c). The enhancement factor in resolution
can be higher if the photon distribution is non-Gaussian. Such an enhancement can be
accomplished by frequency modulation as in a typical radar system [10,11]. Even in this
case, the maximum sensing gain is still below the Heisenberg limit of quantum sensing, as
shown by the gray curve in Figure 3c.

Figure 4 shows numerical calculations of Equation (5) for the many-wave interference
in the N-slit system of Figure 1c. For the analysis, the slit number is set at 2 ≤ N ≤ 20. As
shown in Figure 4a, the fringe condition is satisfied by α = pπ, where p = 0,±1,±2, . . .
As N increases, the fringe resolution improves. To understand the N effect, N-dependent
interference fringes are shown in Figure 4b,c, where N = 2, 10, 40 are set for comparison
purposes. From Figure 4a, FWHMs are calculated and plotted in Figure 4d. The red curve
is the theoretical reference of π/N [16]. At a glance, both the numerical data from Figure 4a
and the reference seem to match well. The small discrepancy, however, is due to the non-
Gaussian function of IN(α,β) based on monochromatic waves, as discussed in Figure 3.
Interestingly, this N-wave-caused resolution enhancement shows the same feature as the
Heisenberg limit in quantum sensing [12–14,20–25].

Figure 5 shows numerical calculations of the Kth-order intensity products for Fig-
ure 1b,c and Figure 4. For this, Equation (6) is used, where two variables of N and K are set
for 2 ≤ N ≤ 200 and 1 ≤ K ≤ 40, where N is far smaller than the actual photon number
of I0. All K-dependent intensity products IK

N are normalized for comparison purposes.
As shown in Figure 5a–c, the ratio of FWHM of the Kth-order to the first-order intensity
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product is satisfied by 1/
√

K (see blue diamonds in Figure 5c), where the red curve refers to
the SNL. The small discrepancy between them is due to the sine (monochromatic) function
of the light rather than the Gaussian distribution of the actual laser light, as shown in
Figures 2–4. Thus, the intensity-product-resulting resolution enhancement in Figure 5c also
demonstrates the same SNL applied to an N-slit interferometer. In other words, Figure 5
verifies that the proposed projection measurement-based optical sensing for the Kth-order
intensity product is even effective for the fringes of a grating-based spectrometer. Due
to the practically unlimited Kth order, the phase-resolution enhancement can beat the
Heisenberg limit given by π/N (discussed in Figure 6) [12–14].

Figure 6 shows a practical example of the grating-based spectrometer with N = 1000.
As discussed in Figures 4 and 5, the resolution is enhanced by 500 times compared with the
two-slit case. Figure 6a shows the interference fringe for Figure 1b or Figure 1c as a function
of the frequency of the probe light and phase difference α (or position P on a screen focused
by a lens). The frequency f0 is a reference, where an unknown frequency detected by an
arrayed photodiode is calculated with respect to the position, i.e., the phase difference
α. As demonstrated in Figures 4 and 5, the phase resolution by 1000 slits or grooves in
Figure 6a is enhanced by π/1000, satisfying the Heisenberg limit in the amplitude version.

Figure 6b shows the resolving power to separate an unknown frequency f ′ from the
reference f0. The frequency difference of f ′ from f0 is easily calculated by measuring
the detuned phase ∆ from the principle maxima at α = −π. Here, the frequency f ′ is
chosen for 0.999 f0 in Figure 6a. As shown in Figure 6b, f ′ is resolvable by the Rayleigh
criterion [16], where the N-enhanced resolution results in α = −π

(
1 + 1

1000

)
= −3.1447

and ∆ = −0.001π.
If the proposed Kth-order intensity product is applied to Figure 6a, as shown in

Equation 6, then more resolvable frequencies are allowed, as discussed in Figure 5. For K
= 100, the resolution of I1000 for N = 1000 is 10 times enhanced to π/10, 000, as shown by
the blue and red dotted curves in Figure 5c. Thus, the unresolvable f ′′ positioned between
f0 and f ′ in Figure 5b is now resolvable, as shown by the green curve. This may sound
awkward because we believe the measurement cannot retrospectively affect the optical
system (interference). As the quantum eraser has been intensively studied over the last
several decades for the mysterious phenomenon of the cause-effect relation [34–36], the
enhanced resolution by the proposed intensity product method looks mysterious, too.
Unlike the polarization-basis projection-based quantum erasers in ref. [36], however, the
projection measurement in Figures 2–6 is for the Gaussian-distributed statistical ensemble
inside the MZI in Figure 1a, where the intensity product satisfying the SNL beats the
Heisenberg limit in resolution, as shown in Figure 6c.

In Figure 7, FPI, N-slit interferometer, and super-resolution [12–14,25,37] are numeri-
cally investigated for the corresponding parameters of the resolution limit. The top (bottom)
row is for less (more) dense cases with N. The left-end and middle-left columns are for
FPI and N-slit cases [16]. The middle-right column is for the super-resolution of quantum
sensing [37]. The right-end column is for comparison between them. For FPI, the trans-
mitted intensity is IT(r) = 1/

[
1 +

(
2r/

(
1 − r2))2sin2δ

]
, where δ = 2kdd is the phase gain

between cavity mirrors separated by distance d, and r is the reflection coefficient of the
cavity mirror. For super-resolution [37], a typical MZI is reconfigured for the quantum
eraser with orthogonal polarization bases [35,36], where the MZI output is divided into K
folds for polarization-basis projection measurement through a polarizer [35–37]; otherwise,
a single-photon-resolving detector must be used [14,25].
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In the right-end column of Figure 7, the resolution of FPI (N slit) is represented
by the red (blue-dotted) curve, representing the same FWHM. Thus, N = 1000 (10,000)
corresponds to r = 0.999 (0.9999) in FPI, satisfying the same relation between N and r.
Practically, however, FPI has a higher-order benefit with longer d, surpassing the grating-
based spectrometer in achievable resolution. The N number in the middle-right column
represents the number of divided fields for the intensity product. This intensity product
is the same as SNL in Figures 5 and 6, but the phase control of each divided field is
required [37], resulting in N00N-based photonic de Broglie waves [20–24]. In the right-
end column, super-resolution is represented by the green curve, demonstrating the same
resolution as the N-slit system and FPI. Unlike the projection measurement in super-
resolution and SNL, the FPI and N-slit interferometers are for amplitude superposition-
based first-order (K = 1) intensity correlation, as shown in Equation (5) for Figure 4 [16]. As
a result, either N wave superposition for the first-order intensity correlation or N projection
measurement-based super-resolution shows the same Heisenberg limit in resolution. This
fact has never been discussed yet.

5. Discussion

Unlike super-resolution [37], the proposed intensity-product-based SNL completely
excludes phase relations between fields and thus satisfies the statistical ensemble of mea-
surement events. As demonstrated in an experiment by Hanbury-Brown and Twiss [38],
the advantage of the proposed intensity product method over the amplitude interference
in FPI is the phase variation independence among fields due to the phase-independent
identical intensities in Born’s rule [33]. This benefit has already been applied to opti-
cal spectrometers [37] and to quantum technologies using entangled photon pairs, even
though the phase relation between entangled photons is still unknown. Thus, the SNL
applied to the N-slit interference fringes in Figure 6c surpasses the maximum resolution
achievable by quantum sensors confined by the Heisenberg limit. This unprecedented reso-
lution can, of course, be applied to conventional grating-based spectrometers or FPI-based
wavelength meters.

The technical advantage of the proposed intensity-product-based sensing method can
also be found in a Si-photonics-integrated optical chip [39]. In general, the resolution of FPI
strongly depends on the reflection coefficient of the cavity mirror, as shown in Figure 7. The
discrete N fields from an N-slit (grating) system are an extreme case of FPI due to the same
amplitudes, resulting in the π/N resolution (see the last column in Figure 7), which is equal
to the Heisenberg limit in quantum sensing [14]. However, FPI and the N-slit system are
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optically bulky and extremely sensitive to the phase variation caused by environments, i.e.,
temperatures, mechanical vibrations, and air turbulences. Thus, Si-photonics can replace
the bulky spectrometer for a robust micro-sensor beyond the diffraction limit. Moreover,
the proposed sensing technique can also be applied to remote sensors such as a Doppler
Lidar and hazardous gas detector to extend operational distance.

For potential applications of the proposed intensity-product-based SNL, block ‘X’ in
Figure 1a can be replaced by a two-dimensional photo sensor such as a conventional image
sensor in a CCD camera, as shown in Figure 8. For this, an electronic circuit must be
followed by a 2D photodiode for the intensity product of all sensor pixel data. As shown in
ref. [29], no difference exists between the single photon and CW lights in fringe visibility.
This means that the N × N division-caused intensity reduction in each channel does not
ruin the original fringe visibility. A resolution enhancement factor η is the same as the
square root of the pixel number of the sensor, resulting in η = 1000 for a 1000 × 1000 off-the-
shelf image sensor. The other application of the proposed method can be found in optical
quantum communications for dense coding based on phase manipulations of coherent
photons via a noiseless linear amplifier [40], where the noise figure can be enhanced by the
proposed intensity-product measurements. For compatibility with Figure 1, an MZI-based
secured optical key distribution protocol using a double unitary transformation may also
be a good candidate for a round-trip configuration of MZI [41].
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6. Conclusions

An intensity-product-based optical sensing method was proposed to surpass the
limited resolution in conventional spectrometers. For the projection measurements of
interference fringes, the SNL was satisfied not only for an MZI but also for an N-slit interfer-
ometer. The N-slit interference was analyzed for the same resolution as super-resolution in
quantum sensing satisfying the Heisenberg limit. Due to the same physics of discrete phase
relation between N waves, FPI was also compared with the N-slit interferometer, resulting
in an equivalent parameter relation between reflection coefficient ‘r’ and slit number ‘N.’
Finally, the intensity product applied to the conventional spectrometer was numerically
demonstrated for beating quantum sensors in terms of resolution. Due to the satisfaction
of the statistical ensemble by the proposed intensity product sensing method, a simple
electronic circuit for the Kth-order intensity product of an interference fringe from the
spectrometer might be applied for the

√
K-enhanced resolution beyond the Heisenberg

limit. Due to the coherence feature, a cw frequency modulation in Radar technology might
be useful for the proposed intensity-product method to extend operational distance.
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